MicroRNA Modulation during the In vitro Culture of Hematopoietic Stem Cells Prior to Transplantation

نویسندگان

  • Saeid Shahrabi
  • Saeid Kaviani
  • Masoud Soleimani
  • Ali Akbar Pourfathollah
  • Behnaz Bakhshandeh
  • Saeideh Hajizamani
  • Najmaldin Saki
چکیده

BACKGROUND Human umbilical cord blood (HUCB) is an acceptable and readily accessible source of stem cells. There is an ongoing interest in cord blood stem cell therapies; however, little is known about the possible unfavorable effects of laboratory modifications on the isolated HUCB cells. The involvement of miRNAs in several biological processes has been shown. The aim of this study was to evaluate the possible changes in miRNA expression profiles in CD133+ hematopoietic cells after in vitro culture. METHODS HUCBCD133+ hematopoietic stem cells were isolated by magnetic-activated cell sorting, and then the cells were counted using flow cytometry. The cells were divided into 2 groups. In the first group, RNA was extracted and the cells of the second group were cultured in vitro for 12 days and then these cells were used to assay miRNAs expression using real-time qPCR. RESULTS The results showed that the expression of 349 out of 1,151 screened miRNAs was upregulated following a 12-day in vitro culture of CD133+ cells, whereas the expression of 293 miRNAs was downregulated. In addition, the expression of 509 miRNAs was not significantly altered. Another in-silico analysis involving the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to the selected miRNAs was also conducted. CONCLUSION Based on our results, the in vitro expansion of HUCB resulted in altered expression levels of miRNAs. This study provides information on the effects of 2-dimensional culture of hematopoietic cells prior to transplantation for more successful transplantation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA Modulation during the In vitro Culture of Hematopoietic Stem Cells Prior to Transplantation

Background: Human umbilical cord blood (HUCB) is an acceptable and readily accessible source of stem cells. There is an ongoing interest in cord blood stem cell therapies; however, little is known about the possible unfavorable effects of laboratory modifications on the isolated HUCB cells. The involvement of miRNAs in several biological processes has been shown. The aim of this study was to ev...

متن کامل

تکثیر سلول‌های بنیادی خونساز خون بندناف بر‌ روی بسترهای نانوالیاف زیست سازگار: گزارش کوتاه

Background: Hematopoietic stem cell transplantation (HSCT) is a therapeutic approach in treatment of hematologic malignancies and incompatibility of bone marrow. Umbilical cord blood (UCB) known as an alternative for hematopoietic stem/ progenitor cells (HPSC) for in allogenic transplantation. The main hindrance in application of HPSC derived from umbilical cord blood is the low volume of colle...

متن کامل

Expansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38- Using Liver Cells

Many investigators have used xenogeneic, especially murine stromal cells and fetal calf serum to maintain and expand human stem cells. The proliferation and expansion of human hematopoietic stem cells in ex vivo culture were examined with the goal of generating a suitable protocol for expanding hematopoietic stem cells for patient transplantation. Using primary fetal liver cells, we established...

متن کامل

Advances and challenges in storage, transplantation, expansion and homing of Umbilical Cord Blood Hematopoietic Stem Cells (UCB-HSCs)

Abstract Background and Objectives Umbilical cord blood hematopoietic stem cells (UCB-HSCs) have high potential capabilities in the treatment of hematological and non-hematological disorders. Awareness of biology, self-renewal, homing, expansion, storage, and transplantation can lead to optimal use of these cells.   Materials and Methods In this Review article in order to investigate the adv...

متن کامل

Expression of Neurotrophins in Adipose-derived Stem Cells during in vitro Culture and Posttransplantation in Parkinsonian Rat Model

Background: Adipose tissue stem cells (ASCs) cause faster repair of damaged tissue posttransplantation by releasing growth factors in neurodegenerative diseases. ASCs secrete factors in the culture medium called conditioned medium (CM) in vitro. This study investigated the expression of neurotrophin genes in vitro culture and transplant of ASCs in Parkinsonian rats. Materials and Methods: In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2017